

Welcome to ADCPy’s documentation!

Purpose

This code prepares large amounts of single ping ADCP data from the raw binary for use with xarray by converting it to netCDF.

Motivation

The code was written for the TRDI ADCP when I discovered theat TRDI’s Velocity software could not easily export single ping data. While there are other packages out there, as the time of writing this code, I had yet to find one that saved the data in netCDF format (so it can be accessed with xarray and dask), could be run on linux, windows and mac, and did not load it into memory (the files I have are > 2GB)

The code is written as a module of functions, rather than classes, ensemble information is stored as nested dicts, in order to be more readable and to make the structure of the raw data (particularly the TRDI instruments) understandable.

Status

As the code stands now, a 3.5 GB, single ping Workhorse ADCP .pd0 file with 3 Million ensembles will take 4-5 hours to convert. I live with this, because I can just let the conversion happen overnight on such large data sets, and once my data is in netCDF, everything else is convenient and fast. I suspect that more speed might be acheived by making use of xarray and dask to write the netCDF output, and I may do this if time allows, and I invite an enterprising soul to beat me to it. I use this code myself on a routine basis in my work, and continue to make it better as I learn more about python.

At USGS Coastal and Marine Geology we use the PMEL EPIC convention for netCDF as we started doing this back in the early 1990’s. Downstream we do convert to more current CF conventions, however our diagnostic and other legacy code for processing instrument data from binary and other raw formats depends on the EPIC convention for time, so you will see a time (Time (UTC) in True Julian Days: 2440000 = 0000 h on May 23, 1968) and time2 (msec since 0:00 GMT) variable created as default. This may confuse your code. If you want the more python friendly CF time (seconds since 1970-01-01T00:00:00 UTC) set timetype to CF.

Use at your own risk - this is a work in progress and a python learning project.

Enjoy,

Marinna

Contents:

	adcpy.EPICstuff package
	Submodules

	adcpy.EPICstuff.ADCPcdf2ncEPIC module

	adcpy.EPICstuff.EPICmisc module

	adcpy.EPICstuff.repopulateEPIC module

	adcpy.EPICstuff.reshapeEPIC module

	Module contents

	adcpy.Nortekstuff package
	Submodules

	adcpy.Nortekstuff.Norteknc2USGScdf module

	Module contents

	adcpy.TRDIstuff package
	Submodules

	adcpy.TRDIstuff.TRDIpd0tonetcdf module

	adcpy.TRDIstuff.pd0 module

	adcpy.TRDIstuff.pd0splitter module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

adcpy.EPICstuff package

Submodules

adcpy.EPICstuff.ADCPcdf2ncEPIC module

This code takes a raw netcdf file containing data from any 4 beam Janus
acoustic doppler profiler, with or without a center beam, and transforms the
data into Earth coordinates. Data are output to netCDF using controlled
vocabulary for the variable names, following the EPIC convention wherever
possible.

ADCPcdf2ncEPIC.doEPIC_ADCPfile(cdfFile, ncFile, attFile, settings)

cdfFile = path to a USGS raw netCDF ADCP data file

ncFile = a netcdf file structured according to PMEL EPIC conventions

attFile = a file containing global attributes (metadata) for the data. See below

settings = a dictionary of preferences for the processing:

'good_ensembles': [0, np.inf] # starting and ending indices of the input file. For all data use [0,np.inf]
'orientation': 'UP' # uplooking ADCP, for downlooking, use DOWN
'transducer_offset_from_bottom': 1.0 # a float in meters
'transformation': 'EARTH' # | BEAM | INST
'adjust_to_UTC': 5 # for EST to UTC, if no adjustment, set to 0 or omit

Depth dependent attributes are compute from the mean Pressure found in the raw
data file. So it is best to have the time series trimmed to the in water
time or to provide the good ensemble indices for in water time

Note that file names and paths may not include spaces

Example contents of a Global Attribute file:

SciPi; J.Q. Scientist
PROJECT; USGS Coastal Marine Geology Program
EXPERIMENT; MVCO 2015 Stress Comparison
DESCRIPTION; Quadpod 13.9m
DATA_SUBTYPE; MOORED
COORD_SYSTEM; GEOGRAPHIC + SAMPLE
Conventions; PMEL/EPIC
MOORING; 1057
WATER_DEPTH; 13.9
WATER_DEPTH_NOTE; (meters), nominal
WATER_DEPTH_source; ship fathometer
latitude; 41.3336633
longitude; -70.565877
magnetic_variation; -14.7
Deployment_date; 17-Nov-2015
Recovery_date; 14-Dec-2015
DATA_CMNT;
platform_type; USGS aluminum T14 quadpod
DRIFTER; 0
POS_CONST; 0
DEPTH_CONST; 0
Conventions; PMEL/EPIC
institution; United States Geological Survey, Woods Hole Coastal and Marine Science Center
institution_url; http://woodshole.er.usgs.gov

Created on Tue May 16 13:33:31 2017

@author: mmartini

	
EPICstuff.ADCPcdf2ncEPIC.add_VAR_DESC(cdf)

	add the VAR_DESC global attribute constructed from variable names found in the file

	Parameters

	cdf (object) – netCDF file object

	
EPICstuff.ADCPcdf2ncEPIC.beam2inst(adcpo, reverse=False, force=False)

	Rotate velocities from beam to instrument coordinates.

	Parameters

	
	adcpo (dict) – containing the beam velocity data.

	reverse (bool) – If True, this function performs the inverse rotation (inst->beam).

	force (bool) – When true do not check which coordinate system the data is in prior to performing this rotation.

	
EPICstuff.ADCPcdf2ncEPIC.cal_earth_rotmatrix(heading=0, pitch=0, roll=0, declination=0)

	this transformation matrix is from the R.D. Instruments Coordinate Transformation booklet.
It presumes the beams are in the same position as RDI Workhorse ADCP beams, where,
when looking down on the transducers:

Beam 3 is in the direction of the compass' zero reference
Beam 1 is to the right
Beam 2 is to the left
Beam 4 is opposite beam 3
Pitch is about the beam 2-1 axis and is positive when beam 3 is raised
Roll is about the beam 3-4 axis and is positive when beam 2 is raised
Heading increases when beam 3 is rotated towards beam 1

Nortek Signature differs in these ways:

TRDI beam 3 = Nortek beam 1
TRDI beam 1 = Nortek beam 2
TRDI beam 4 = Nortek beam 3
TRDI beam 2 = Nortek beam 4
Heading, pitch and roll behave the same as TRDI

	Parameters

	
	heading (float) – ADCP heading in degrees

	pitch (float) – ADCP pitch in degrees

	roll (float) – ADCP roll in degrees

	declination (float) – heading offset from true, Westerly is negative

	Returns

	

	
EPICstuff.ADCPcdf2ncEPIC.calc_beam_rotmatrix(theta=20, convex=True, degrees=True)

	Calculate the rotation matrix from beam coordinates to
instrument head coordinates.
per dolfyn rotate.py code here: https://github.com/lkilcher/dolfyn

	Parameters

	
	theta (float) – is the angle of the heads (usually 20 or 30 degrees)

	convex (int) – is a flag for convex or concave head configuration.

	degrees (bool) – is a flag which specifies whether theta is in degrees or radians (default: degrees=True)

	
EPICstuff.ADCPcdf2ncEPIC.doEPIC_ADCPfile(cdfFile, ncFile, attFile, settings)

	Convert a raw netcdf file containing data from any 4 beam Janus acoustic doppler profiler,
with or without a center beam, and transforms the data into Earth coordinates. Data are output to netCDF
using controlled vocabulary for the variable names, following the EPIC convention wherever possible.

	Parameters

	
	cdfFile (str) – raw netCDF input data file name

	ncFile (str) – output file name

	attFile (str) – text file containing metadata

	settings (dict) – a dict of settings as follows:

'good_ensembles': [] # starting and ending indices of the input file. For all data use [0,np.inf]
'orientation': 'UP' # uplooking ADCP, for downlooking, use DOWN
'transducer_offset_from_bottom': 2.02 # in meters
'transformation': 'EARTH' # | BEAM | INST
'adjust_to_UTC': 5 # for EST to UTC, if no adjustment, set to 0 or omit

	
EPICstuff.ADCPcdf2ncEPIC.floor(dec)

	convenience function to round down
provided to avoid loading the math package
and because np.floor was causing unexpected behavior w.r.t ints

	Parameters

	dec (float) –

	Returns

	rounded number

	
EPICstuff.ADCPcdf2ncEPIC.inst2earth(adcpo, reverse=False, fixed_orientation=False, force=False)

	Rotate velocities from the instrument to earth coordinates.

	Parameters

	
	adcpo (dict) – containing the data in instrument coordinates

	reverse (bool) – If True, this function performs the inverse rotation (earth->inst).

	fixed_orientation (bool) – When true, take the average orientation and apply it over the whole record.

	force (bool) – When true do not check which coordinate system the data is in prior to performing this rotation.

Notes

The rotation matrix is taken from the Teledyne RDI ADCP Coordinate Transformation manual January 2008

When performing the forward rotation, this function sets the ‘inst2earth:fixed’ flag to the value of
fixed_orientation. When performing the reverse rotation, that value is ‘popped’ from the props dict and the input
value to this function`fixed_orientation has no effect. If ‘inst2earth:fixed’ is not in the props dict then
the input value is used.

	
EPICstuff.ADCPcdf2ncEPIC.read_globalatts(fname)

	read_globalatts: read in file of metadata for a tripod or mooring

reads global attributes for an experiment from a text file (fname) called by all data processing programs
to get uniform metadata input one argument is required- the name of the file to read- it should have this form:

SciPi; J.Q. Scientist
PROJECT; USGS Coastal Marine Geology Program
EXPERIMENT; MVCO 2015 Stress Comparison
DESCRIPTION; Quadpod 13.9m
DATA_SUBTYPE; MOORED
COORD_SYSTEM; GEOGRAPHIC + SAMPLE
Conventions; PMEL/EPIC
MOORING; 1057
WATER_DEPTH; 13.9
WATER_DEPTH_NOTE; (meters), nominal
WATER_DEPTH_source; ship fathometer
latitude; 41.3336633
longitude; -70.565877
magnetic_variation; -14.7
Deployment_date; 17-Nov-2015
Recovery_date; 14-Dec-2015
DATA_CMNT;
platform_type; USGS aluminum T14 quadpod
DRIFTER; 0
POS_CONST; 0
DEPTH_CONST; 0
Conventions; PMEL/EPIC
institution; United States Geological Survey, Woods Hole Coastal and Marine Science Center
institution_url; http://woodshole.er.usgs.gov

	Parameters

	fname (str) – input file name

	Returns

	dict of metadata

	
EPICstuff.ADCPcdf2ncEPIC.setupEPICnc(fname, rawcdf, attfile, settings)

	Construct an empty netCDF output file to EPIC conventions

	Parameters

	
	fname (str) – output netCDF file name

	rawcdf (Dataset) – input netCDF raw data file object

	attfile (str) – metadata text file

	settings (dict) – settings as follows:

'good_ensembles': [] # starting and ending indices of the input file. For all data use [0,np.inf]
'orientation': 'UP' # uplooking ADCP, for downlooking, use DOWN
'transducer_offset_from_bottom': 2.02 # in meters
'transformation': 'EARTH' # | BEAM | INST
'adjust_to_UTC': 5 # for EST to UTC, if no adjustment, set to 0 or omit

	Returns

	netCDF file object

	
EPICstuff.ADCPcdf2ncEPIC.writeDict2atts(cdfobj, d, tag)

	write a dictionary to netCDF attributes

	Parameters

	
	cdfobj (object) – netcdf file object

	d (dict) – metadata

	tag (str) – tag to add before each atrribute name

	Returns

	dict of metadata as written to file

adcpy.EPICstuff.EPICmisc module

Helper functions, mostly EPIC specific

	
EPICstuff.EPICmisc.EPICtime2datetime(time, time2)

	convert EPIC time and time2 to python datetime object

	Parameters

	
	array time (numpy) –

	array time2 (numpy) –

	Returns

	gregorian time as a list of int, datetime object

	
EPICstuff.EPICmisc.ajd(dto)

	Given datetime object returns Astronomical Julian Day.
Day is from midnight 00:00:00+00:00 with day fractional
value added.

	Parameters

	dto (object) – datetime

	Returns

	int Astronomical Julian Day

	
EPICstuff.EPICmisc.apply_timezone(cf_units)

	
	In xarray, the presence of time zone information in the units was causing decode_cf to ignore the hour,

	minute and second information. This function applys the time zone information and removes it from the units

	Parameters

	cf_units (str) –

	Returns

	str

	
EPICstuff.EPICmisc.catEPIC(datafiles, outfile)

	

	
EPICstuff.EPICmisc.cftime2EPICtime(timecount, timeunits)

	

	
EPICstuff.EPICmisc.check_fill_value_encoding(ds)

	
	restore encoding to what it needs to be for EPIC and CF compliance

	variables’ encoding will be examined for the correct _FillValue

	Parameters

	ds – xarray Dataset

	Returns

	xarray Dataset with corrected encoding, dict with encoding that can be used with xarray.to_netcdf

	
EPICstuff.EPICmisc.fix_missing_time(ds, delta_t)

	fix missing time values
change any NaT values in ‘time’ to a time value based on the last known good time, iterating to cover
larger gaps by constructing time as we go along.
xarray.DataArray.dropna is one way to do this, automated and convenient, and will leave an uneven time series,
so if you don’t mind time gaps, that is a better tool.

	Parameters

	
	ds – xarray Dataset, time units are in seconds

	deltat – inter-burst time, sec, for the experiment’s sampling scheme

	Returns

	

	
EPICstuff.EPICmisc.jdn(dto)

	convert datetime object to Julian Day Number

	Parameters

	dto (object) – datetime

	Returns

	int Julian Day Number

	
EPICstuff.EPICmisc.make_encoding_dict(ds)

	prepare encoding dictionary for writing a netCDF file later using xarray.to_netcdf

	Parameters

	ds – xarray Dataset

	Returns

	dict with encoding prepared for xarray.to_netcdf to EPIC/CF conventions

	
EPICstuff.EPICmisc.resample_cleanup(datafiles)

	

	
EPICstuff.EPICmisc.s2hms(secs)

	convert seconds to hours, minutes and seconds

	Parameters

	secs (int) –

	Returns

	hours, minutes and seconds

adcpy.EPICstuff.repopulateEPIC module

repopulateEPIC

Distribute burst data output from reshapeEPIC along the sample dimension

a burst shaped file output from reshapeEPIC will have two issues that need
to be addressed before the data can be used with xarray:

-- reshape time to be one dimension
-- make sure the samples within each burst are index according to their
time stamps. Within burst time stamps will not be preserved

	Usage:

	python repopulateEPIC.py shaped_file new_file sample_rate [start=’left’] [drop = None]

	param str shaped_file

	output from reshapeEPIC, the expected shape of the data is one of::
[time, sample]
[time, sample, depth]
[time, sample, depth, lat, lon]

	param str new_file

	a new file with the adjusted time, this file, if it exists, will be overwritten

	param int sample_rate

	the sample rate the instrument was intended to use during each burst, in seconds

	param str start

	what the time stamp should be for each burst::
left = beginning of the burst based on the first sample time
center = middle of the burst based on first sample and last sample times
right = end of the burst based on the last sample time

	param list drop

	variable names to omit from the output file

Created on Wed Oct 3 15:21:53 2018
@author: mmartini

	
EPICstuff.repopulateEPIC.repopulateEPIC(*args, **kwargs)

	

adcpy.EPICstuff.reshapeEPIC module

reshapeEPIC

apportion a continuous time series file into bursts (e.g. reshape)

Notes

	the expected dimensions are [time, depth, lat, lon] for continuous data in EPIC

	we are reshaping to [time, sample, depth, lat, lon]

	for ADCP files, beams are expressed as variables vel1, vel2, … veln

	if there is a shape problem then the data file might not be properly understood.

It might be that this code won’t work, this problem will become evident if an error is produced and operation
returns to the keyboard in debug mode. If this happens, check the shapes of the variables.

WARNING: time may not be monotonically increasing within bursts (e.g. along the sample dimension)
this means that if the number of samples per burst is inconsistent, or if
there are gaps in time, the end of a burst may be fill_value, including time values

Marinna Martini for the USGS in Woods Hole, 9/20/2018
originally coded for MATLAB as reshapeEPIC
https://cmgsoft.repositoryhosting.com/trac/cmgsoft_m-cmg/browser/trunk/MMstuff/reshapeEPIC.m

Created on Thu Sep 20 14:52:42 2018

@author: mmartini
https://github.com/mmartini-usgs

	
EPICstuff.reshapeEPIC.find_boundaries(data, edges)

	using a list of start and end timestamps (edges) that delineate the beginning times and ending times
of burts of measurements, find the indices into the data that correspond to these edges.
The time base may be irregular, it does not matter.

	Parameters

	
	data (list) – time stamps from the data

	edges (list[tuple]) – start and end times

	Returns

	list of indices

	
EPICstuff.reshapeEPIC.find_first_masked_value(x)

	helper function to find the first occurrence of a masked value in a numpy masked array
returns None if no masked values are found
:param numpy array x:
:return: index

	
EPICstuff.reshapeEPIC.generate_expected_start_times(cdffile, dim, burst_start_offset, burst_interval, burst_length, sample_rate)

	generate a regular and recurring set of start and end timestamps that
delineate the beginning times and ending times of burts of measurements

	Parameters

	
	cdffile (str) – name of a continuous time series data file

	dim (str) – the unlimited or time dimension which we will find the indices to reshape

	burst_start_offset (int) – when to start to make bursts in the continuous data, seconds

	burst_interval (int) – time between start of bursts, seconds

	burst_length (int) – number of samples in a burst

	sample_rate (int) – Hertz

	Returns

	list of tuples of start and end times for each burst

	
EPICstuff.reshapeEPIC.reshapeEPIC(cont_file, burst_file, burst_length, dim='time', edges=None, drop=None, variable_attributes_to_omit=None, verbose=False)

	apportion a continuous time series file into bursts (e.g. reshape)

	Usage

	issue_flags = reshapeEPIC(cont_file, burst_file, burst_length,
dim=None, edges=None, drop=None)

	Parameters

	
	cont_file (str) – name of netCDF file with continuous data

	burst_file (str) – name of file to store the reshaped data, attributes will be copied

	burst_length (int) – maximum number of samples in each burst

	dim (str) – name of dimension along which we will split the data, usually ‘time’ or ‘Rec’

	edges (list[tuple]) – [(start0, end0), (start1, end1), …] of edges defining the edges of each burst

	drop (str) – set of variable names to omit from the output file

	variable_attributes_to_omit (str) – variable attributes to omit from output file

	verbose (bool) – get lots of feedback to STDOUT

	Returns

	dictionary of problem types and status

	
EPICstuff.reshapeEPIC.save_indexes_to_file(cdffile, edge_tuples, index_file=None)

	write indexes to a file with the time stamps for QA/QC

	Parameters

	
	cdffile (str) – the continuous time series netCDF file being operated upon

	edge_tuples (list[tuple]) – the bursts to output

	index_file (str) – a file to output a string listing of time stamps

Module contents

adcpy.Nortekstuff package

Submodules

adcpy.Nortekstuff.Norteknc2USGScdf module

Module contents

adcpy.TRDIstuff package

This part of ADCPy handles raw data from Teledyne RD Instruments
Acoustic Doppler Profilers. Raw binary data are commonly in
a format called pd0.

Submodules

adcpy.TRDIstuff.TRDIpd0tonetcdf module

adcpy.TRDIstuff.pd0 module

adcpy.TRDIstuff.pd0splitter module

Module contents

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 EPICstuff	

 	
 	
 EPICstuff.ADCPcdf2ncEPIC	

 	
 	
 EPICstuff.EPICmisc	

 	
 	
 EPICstuff.repopulateEPIC	

 	
 	
 EPICstuff.reshapeEPIC	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | M
 | R
 | S
 | W

A

 	
 	add_VAR_DESC() (in module EPICstuff.ADCPcdf2ncEPIC)

 	
 	ajd() (in module EPICstuff.EPICmisc)

 	apply_timezone() (in module EPICstuff.EPICmisc)

B

 	
 	beam2inst() (in module EPICstuff.ADCPcdf2ncEPIC)

C

 	
 	cal_earth_rotmatrix() (in module EPICstuff.ADCPcdf2ncEPIC)

 	calc_beam_rotmatrix() (in module EPICstuff.ADCPcdf2ncEPIC)

 	
 	catEPIC() (in module EPICstuff.EPICmisc)

 	cftime2EPICtime() (in module EPICstuff.EPICmisc)

 	check_fill_value_encoding() (in module EPICstuff.EPICmisc)

D

 	
 	doEPIC_ADCPfile() (in module EPICstuff.ADCPcdf2ncEPIC)

E

 	
 	EPICstuff (module)

 	EPICstuff.ADCPcdf2ncEPIC (module)

 	EPICstuff.EPICmisc (module)

 	
 	EPICstuff.repopulateEPIC (module)

 	EPICstuff.reshapeEPIC (module)

 	EPICtime2datetime() (in module EPICstuff.EPICmisc)

F

 	
 	find_boundaries() (in module EPICstuff.reshapeEPIC)

 	find_first_masked_value() (in module EPICstuff.reshapeEPIC)

 	
 	fix_missing_time() (in module EPICstuff.EPICmisc)

 	floor() (in module EPICstuff.ADCPcdf2ncEPIC)

G

 	
 	generate_expected_start_times() (in module EPICstuff.reshapeEPIC)

I

 	
 	inst2earth() (in module EPICstuff.ADCPcdf2ncEPIC)

J

 	
 	jdn() (in module EPICstuff.EPICmisc)

M

 	
 	make_encoding_dict() (in module EPICstuff.EPICmisc)

R

 	
 	read_globalatts() (in module EPICstuff.ADCPcdf2ncEPIC)

 	repopulateEPIC() (in module EPICstuff.repopulateEPIC)

 	
 	resample_cleanup() (in module EPICstuff.EPICmisc)

 	reshapeEPIC() (in module EPICstuff.reshapeEPIC)

S

 	
 	s2hms() (in module EPICstuff.EPICmisc)

 	
 	save_indexes_to_file() (in module EPICstuff.reshapeEPIC)

 	setupEPICnc() (in module EPICstuff.ADCPcdf2ncEPIC)

W

 	
 	writeDict2atts() (in module EPICstuff.ADCPcdf2ncEPIC)

adcpy package

Subpackages

	adcpy.EPICstuff package
	Submodules

	adcpy.EPICstuff.ADCPcdf2ncEPIC module

	adcpy.EPICstuff.EPICmisc module

	adcpy.EPICstuff.repopulateEPIC module
	repopulateEPIC

	adcpy.EPICstuff.reshapeEPIC module
	reshapeEPIC

	Module contents

	adcpy.Nortekstuff package
	Submodules

	adcpy.Nortekstuff.Norteknc2USGScdf module

	Module contents

	adcpy.TRDIstuff package
	Submodules

	adcpy.TRDIstuff.TRDIpd0tonetcdf module

	adcpy.TRDIstuff.pd0 module

	adcpy.TRDIstuff.pd0splitter module

	Module contents

Module contents

Demo data for ADCPy

To demonstrate the software and to provide data for testing, the following
demo data and code are provided.

Larger data files are stored in github under git-lfs.

Demo 1

Workhorse Sentinel data

	The raw binary ADCP file is 9991wh000.000

	The text file with standard USGS metadata is glob_att999.txt This file is read and the contents added as global
attributes to the netCDF file. Some of these attributes (like water_depth) are necessary for processing and
converting the data.

You will need to decide what type of time convention to use, this code will support EPIC or CF.

Data are processed in several steps

	Part 1: Conversion from raw binary to netCDF is done by convert_pd0_to_netcdf() in adcpy.TRDIstuff.TRDIpd0tonetcdf,
and this file is exclusive to TRDI data. Data are output in raw form, as a netCDF file in py9991wh.cdf

	Part 2: Calculate rotation from beam or instrument coordinates to East, North and Up, with doEPIC_ADCPfile() in
adcpy.EPICstuff.ADCPcdf2ncEPIC. Data are output to a netCDF in EPIC conventions file as py9991wh.nc. These data
are not cleaned or edited in any way to trim bins out of the water or noisy data.

The files py9991wh.cdf and py9991.nc are provided as output examples.

The file 9991adcp.doc is the summary of field notes and metadata for this instrument’s deployment.

The output files can be examined and data plotted in puython using the netCDF4 package. If CF time was specified,
the xarray package can be used.

ADCPy

	adcpy package
	Subpackages
	adcpy.EPICstuff package
	Submodules

	adcpy.EPICstuff.ADCPcdf2ncEPIC module

	adcpy.EPICstuff.EPICmisc module

	adcpy.EPICstuff.repopulateEPIC module

	adcpy.EPICstuff.reshapeEPIC module

	Module contents

	adcpy.Nortekstuff package
	Submodules

	adcpy.Nortekstuff.Norteknc2USGScdf module

	Module contents

	adcpy.TRDIstuff package
	Submodules

	adcpy.TRDIstuff.TRDIpd0tonetcdf module

	adcpy.TRDIstuff.pd0 module

	adcpy.TRDIstuff.pd0splitter module

	Module contents

	Module contents

	setup module

setup module

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to ADCPy’s documentation!

 		
 adcpy.EPICstuff package

 		
 Submodules

 		
 adcpy.EPICstuff.ADCPcdf2ncEPIC module

 		
 adcpy.EPICstuff.EPICmisc module

 		
 adcpy.EPICstuff.repopulateEPIC module

 		
 repopulateEPIC

 		
 adcpy.EPICstuff.reshapeEPIC module

 		
 reshapeEPIC

 		
 Module contents

 		
 adcpy.Nortekstuff package

 		
 Submodules

 		
 adcpy.Nortekstuff.Norteknc2USGScdf module

 		
 Module contents

 		
 adcpy.TRDIstuff package

 		
 Submodules

 		
 adcpy.TRDIstuff.TRDIpd0tonetcdf module

 		
 adcpy.TRDIstuff.pd0 module

 		
 adcpy.TRDIstuff.pd0splitter module

 		
 Module contents

_static/up-pressed.png

_static/up.png

_static/plus.png

